Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Nat Commun ; 15(1): 3247, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622169

RESUMEN

Photo-crosslinking polymerization stands as a fundamental pillar in the domains of chemistry, biology, and medicine. Yet, prevailing strategies heavily rely on ultraviolet/visible (UV/Vis) light to elicit in situ crosslinking. The inherent perils associated with UV radiation, namely the potential for DNA damage, coupled with the limited depth of tissue penetration exhibited by UV/Vis light, severely restrict the scope of photo-crosslinking within living organisms. Although near-infrared light has been explored as an external excitation source, enabling partial mitigation of these constraints, its penetration depth remains insufficient, particularly within bone tissues. In this study, we introduce an approach employing X-ray activation for deep-tissue hydrogel formation, surpassing all previous boundaries. Our approach harnesses a low-dose X-ray-activated persistent luminescent phosphor, triggering on demand in situ photo-crosslinking reactions and enabling the formation of hydrogels in male rats. A breakthrough of our method lies in its capability to penetrate deep even within thick bovine bone, demonstrating unmatched potential for bone penetration. By extending the reach of hydrogel formation within such formidable depths, our study represents an advancement in the field. This application of X-ray-activated polymerization enables precise and safe deep-tissue photo-crosslinking hydrogel formation, with profound implications for a multitude of disciplines.


Asunto(s)
Hidrogeles , Rayos Ultravioleta , Masculino , Animales , Bovinos , Ratas , Hidrogeles/química , Rayos X , Polimerizacion , Rayos Infrarrojos
2.
Nat Commun ; 15(1): 2055, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448434

RESUMEN

Developing X-ray scintillators that are water-dispersible, compatible with polymeric matrices, and processable to flexible substrates is an important challenge. Herein, Tb3+-doped Na5Lu9F32 is introduced as an X-ray scintillating material with steady-state X-ray light yields of 15,800 photons MeV-1, which is generated as nanocrystals on halloysite nanotubes. The obtained product exhibits good water-dispersibility and highly sensitive luminescence to X-rays. It is deposited onto a polyurethane foam to afford a composite foam material with dose-dependent radioluminescence. Moreover, the product is dispersed into polymer matrixes in aqueous solution to prepare rigid or flexible scintillator screen for X-ray imaging. As a third example, it is incorporated multilayer hydrogels for information camouflage and multilevel encryption. Encrypted information can be recognized only by X-ray irradiation, while the false information is read out under UV light. Altogether, we demonstrate that the water-dispersible scintillators are highly promising for aqueous processing of radioluminescent, X-ray imaging, and information encrypting materials.

3.
Sci Rep ; 14(1): 6291, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491124

RESUMEN

Hedyotis diffusa Willd (HDW) possesses heat-clearing, detoxification, anti-cancer, and anti-inflammatory properties. However, its effects on rheumatoid arthritis (RA) remain under-researched. In this study, we identified potential targets of HDW and collected differentially expressed genes of RA from the GEO dataset GSE77298, leading to the construction of a drug-component-target-disease regulatory network. The intersecting genes underwent GO and KEGG analysis. A PPI protein interaction network was established in the STRING database. Through LASSO, RF, and SVM-RFE algorithms, we identified the core gene MMP9. Subsequent analyses, including ROC, GSEA enrichment, and immune cell infiltration, correlated core genes with RA. mRNA-miRNA-lncRNA regulatory networks were predicted using databases like TargetScan, miRTarBase, miRWalk, starBase, lncBase, and the GEO dataset GSE122616. Experimental verification in RA-FLS cells confirmed HDW's regulatory impact on core genes and their ceRNA expression. We obtained 11 main active ingredients of HDW and 180 corresponding targets, 2150 RA-related genes, and 36 drug-disease intersection targets. The PPI network diagram and three machine learning methods screened to obtain MMP9, and further analysis showed that MMP9 had high diagnostic significance and was significantly correlated with the main infiltrated immune cells, and the molecular docking verification also showed that MMP9 and the main active components of HDW were well combined. Next, we predicted 6 miRNAs and 314 lncRNAs acting on MMP9, and two ceRNA regulatory axes were obtained according to the screening. Cellular assays indicated HDW inhibits RA-FLS cell proliferation and MMP9 protein expression dose-dependently, suggesting HDW might influence RA's progression by regulating the MMP9/miR-204-5p/MIAT axis. This innovative analytical thinking provides guidance and reference for the future research on the ceRNA mechanism of traditional Chinese medicine in the treatment of RA.


Asunto(s)
Artritis Reumatoide , Hedyotis , MicroARNs , ARN Largo no Codificante , Farmacología en Red , ARN Largo no Codificante/genética , Metaloproteinasa 9 de la Matriz/genética , Simulación del Acoplamiento Molecular , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , Biología Computacional , MicroARNs/genética
4.
J Colloid Interface Sci ; 657: 344-351, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38043236

RESUMEN

Gel actuators are a kind of soft intelligent material that can convert external stimuli into deformations to generate mechanical responses. The development of gel actuators with advanced structures to integrate multiple responsiveness, programmability, and fast deformation ability is urgently needed. Here, we explored a poly(7-(2-methacryloyloxyethoxy)-4-methylcoumarin-co-acrylic acid-co-glycol) ternary gel network as an actuator with reprogrammable photo/H2O dual responsibilities. In such a design, [2 + 2] photodimerization and photocleavage reactions of coumarin moieties can be realized under 365 and 254 nm light irradiation, respectively, affording reversible photodriven behaviour of the gels. The abundant carboxylic acid in the backbone has the capacity to form additional crosslinks to assist and accelerate the photodriven behaviour. The incorporation and orientation of halloysite nanotubes (HNTs) in gel matrices support an axial direction force and result in a more controllable and programmable actuating behaviour. The synergistic response enables fast grasping-releasing of 5-times the weight of the object in water within 10 min by fabricating HNT-incorporated gels as a four-arm gripper.

5.
Neuro Endocrinol Lett ; 44(8): 537-546, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38131177

RESUMEN

BACKGROUND: Deeper studies on the pathological mechanism associated with invasiveness of non-functioning pituitary adenoma (NFPA) is imperative to find better treatments. This research was preliminarily conducted to investigate the correlation between the expression of Claudin-9 (CLDN9), Tyrosine kinase-2 (TYK2), Signal transducers and activators of transcription-3 (STAT3) and invasiveness in NFPA to illustrate the pathological mechanism. METHODS: Clinical data and surgical specimens of 12 patients with NFPA were collected and divided into invasive and non-invasive NFPA groups, comprising six patients for each group. CLDN9, TYK2 and STAT3 transcription and expression levels in the NFPA tissues of the two groups were detected by quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting (WB) and immunohistochemistry (IHC). The lentiviral plasmid transfection technique was used to develop a rat pituitary tumour GT1-1 cell line null control group (NC) and CLDN9-overexpressed experimental group (OE-CLDN9), and TYK2 and STAT3 transcription levels in the NC and OE-CLDN9 cell groups were detected using qRT-PCR. RESULTS: The CLDN9 and STAT3 expressions were significantly higher in invasive than in non-invasive NFPA tissues, whereas the TYK2 expression in invasive NFPA tissues was significantly lower than that in non-invasive NFPA (p < 0.001); The STAT3 upregulated (p < 0.001) and the TYK2 downregulated (p < 0.01) after the CLDN9 overexpression. CONCLUSION: Upregulated CLDN9 may increase the NFPA invasiveness through STAT3. In addition, low TYK2 expression might enhance the invasiveness in NFPA, which needs further studies to confirm. These results could provide a promising research leads for targeted treatment of NFPA.


Asunto(s)
Neoplasias Hipofisarias , Humanos , Neoplasias Hipofisarias/patología , TYK2 Quinasa/genética , TYK2 Quinasa/uso terapéutico , Claudinas/genética , Claudinas/metabolismo , Claudinas/uso terapéutico
6.
Diagnostics (Basel) ; 13(19)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37835850

RESUMEN

(1) Background: Cell proliferation (Ki-67) has important clinical value in the treatment and prognosis of non-small cell lung cancer (NSCLC). However, current detection methods for Ki-67 are invasive and can lead to incorrect results. This study aimed to explore a deep learning classification model for the prediction of Ki-67 and the prognosis of NSCLC based on FDG-PET/CT images. (2) Methods: The FDG-PET/CT scan results of 159 patients with NSCLC confirmed via pathology were analyzed retrospectively, and the prediction models for the Ki-67 expression level based on PET images, CT images and PET/CT combined images were constructed using Densenet201. Based on a Ki-67 high expression score (HES) obtained from the prediction model, the survival rate of patients with NSCLC was analyzed using Kaplan-Meier and univariate Cox regression. (3) Results: The statistical analysis showed that Ki-67 expression was significantly correlated with clinical features of NSCLC, including age, gender, differentiation state and histopathological type. After a comparison of the three models (i.e., the PET model, the CT model, and the FDG-PET/CT combined model), the combined model was found to have the greatest advantage in Ki-67 prediction in terms of AUC (0.891), accuracy (0.822), precision (0.776) and specificity (0.902). Meanwhile, our results indicated that HES was a risk factor for prognosis and could be used for the survival prediction of NSCLC patients. (4) Conclusions: The deep-learning-based FDG-PET/CT radiomics classifier provided a novel non-invasive strategy with which to evaluate the malignancy and prognosis of NSCLC.

7.
J Org Chem ; 88(22): 15964-15968, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37897428

RESUMEN

A series of bifluorenylidene derivatives has been facilely synthesized via a palladium-catalyzed tandem multistep Suzuki cross-coupling and Heck cyclization in one pot. The tandem reaction involves two sequential Suzuki couplings and a subsequent Heck cyclization. The target products are obtained in good yields up to 94%. Even in an extended conjugated substrate, the anticipated products can be prepared.

8.
ACS Appl Mater Interfaces ; 15(39): 46138-46147, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37737104

RESUMEN

Molecular dopants can effectively improve the performance of organic solar cells (OSCs). Here, PM6/BTP-eC9-4Cl-based OSCs are fabricated by a layer-by-layer (LbL) deposition method, and the electron acceptor BTP-eC9-4Cl layer is properly doped by n-type dopant benzyl viologen (BV) or [4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl]dimethyl-amine (N-DMBI-H). The power conversion efficiency (PCE) of OSCs increases from 16.80 to 17.61 or 17.84% when the acceptor layer is doped by BV (0.01 wt %) or N-DMBI-H (0.01 wt %), respectively. At the optimal doping concentration, the device exhibits more balanced charge transport, fewer bimolecular recombinations, faster charge separation and transfer, and better stability. This doping strategy has good universality; when the acceptor layer L8-BO of LbL OSCs is doped by 0.01 wt % BV or 0.01 wt % N-DMBI-H, the PCE increases from 17.49 to 18.35 or 18.25%, respectively. All in all, our studies have demonstrated that the doping strategy is effective in enhancing the performance of OSCs.

9.
Polymers (Basel) ; 15(16)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37631417

RESUMEN

The synthesis of ladder-type 9,9'-bifluorenylidene-based conjugated polymer is reported. Unlike the typical synthetic strategy, the new designed ladder-type conjugated polymer is achieved via tandem Suzuki polymerization/Heck cyclization reaction in one-pot. In the preparation process, Suzuki polymerization reaction occurred first and then the intramolecular Heck cyclization followed smoothly under the same catalyst Pd(PPh3)4. The model reaction proved that the introduction of iodine (I) for this tandem reaction can effectively control the sequential bond-forming process and inhibit the additional competitive side reactions. Thus, small-molecule model compounds could be obtained in high yields. The successes of the synthesized small molecule and polymer compounds indicate that the Pd-catalyzed tandem reaction may be an effective strategy for improving extended π-conjugated materials.

10.
Adv Mater ; 35(28): e2211372, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37130579

RESUMEN

The layer-by-layer (LbL) solution-processed organic solar cells (OSCs) are conductive to achieve vertical phase separation, tunable donor-acceptor (D/A) interfaces, and favorable charge-transport pathways. In this work, a wide-bandgap component poly(9-vinylcarbazole) (PVK) is added to the upper electron acceptor layer to improve the performance of LbL-processed OSCs. Results show that the PVK component can adjust the film morphology, dope the electron acceptor, increase the electron concentration, and improve charge transport. Such n-type doping is verified by Seebeck coefficient measurement, ultraviolet photoelectron spectroscopy, and electron paramagnetic resonance characterization. In addition, the fluorescence intensity and exciton lifetime of the PVK-doped acceptor film are increased, thus being beneficial for exciton diffusion to the D/A interface. Therefore, the power conversion efficiency (PCE) of LbL OSCs increases when 2.50 wt.% PVK is employed in the electron acceptor layer of commonly-used high-efficiency system and a maximum value of 19.05% can be achieved. The role of PVK played in the active layer is different from those of additives and ternary components reported previously, so the results provide an alternative way to enhance the device performance of LbL-processed OSCs.


Asunto(s)
Electrones , Difusión , Conductividad Eléctrica
11.
J Colloid Interface Sci ; 644: 157-166, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37105039

RESUMEN

Solar interfacial steam power generation is a prospective method for seawater desalination. In this work, a salt-blocking three-dimensional (3D) Janus evaporator with a superhydrophobic to superhydrophilic gradient was fabricated by spraying a composite dispersion of multi-walled carbon nanotubes/polydimethylsiloxane (CNTs/PDMS) onto the top side of a polyurethane (PU) foam and polyvinyl alcohol (PVA) solution onto the bottom side. The CNTs/PDMS composite dispersion with nanostructured CNTs and low surface energy PDMS combined with the porous structure of the PU foam rendered the top side superhydrophobic. Therefore, a layer suitable for photothermal conversion was obtained. The hydrophilic PVA combined with the porous structure of the foam rendered the bottom side superhydrophilic, facilitating water absorption and transportation. The asymmetric wettability gradient of the CNTs/PDMS-PU-PVA as a 3D evaporator caused the evaporation rate and transportation speed of water to reach a balance, and the salt was quickly dissolved at the superhydrophilic interface. This 3D salt-resistant Janus evaporator achieved an evaporation rate of 2.26 kg m-2 h-1 under 1 kW m-2 illumination.

12.
Phys Rev E ; 107(2-1): 024206, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36932595

RESUMEN

The coupled phase oscillator model serves as a paradigm that has been successfully used to shed light on the collective dynamics occurring in large ensembles of interacting units. It was widely known that the system experiences a continuous (second-order) phase transition to synchronization by gradually increasing the homogeneous coupling among the oscillators. As the interest in exploring synchronized dynamics continues to grow, the heterogeneous patterns between phase oscillators have received ample attention during the past years. Here, we consider a variant of the Kuramoto model with quenched disorder in their natural frequencies and coupling. Correlating these two types of heterogeneity via a generic weighted function, we systematically investigate the impacts of the heterogeneous strategies, the correlation function, and the natural frequency distribution on the emergent dynamics. Importantly, we develop an analytical treatment for capturing the essential dynamical properties of the equilibrium states. In particular, we uncover that the critical threshold corresponding to the onset of synchronization is unaffected by the location of the inhomogeneity, which, however, does depend crucially on the value of the correlation function at its center. Furthermore, we reveal that the relaxation dynamics of the incoherent state featuring the responses to external perturbations is significantly shaped by all the considered effects, thereby leading to various decaying mechanisms of the order parameters in the subcritical region. Moreover, we untangle that synchronization is facilitated by the out-coupling strategy in the supercritical region. Our study is a step forward in highlighting the potential importance of the inhomogeneous patterns involved in the complex systems, and could thus provide theoretical insights for profoundly understanding the generic statistical mechanical properties of the steady states toward synchronization.

13.
Chem Commun (Camb) ; 58(98): 13636-13639, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36408917

RESUMEN

Maleimide-functionalized HNTs (HNTs-I) were prepared and explored as a nanophotoinitiator. Vinyl monomers can be grafted onto the nanotubes following a spatially controllable, metal-free and non-contact photoinitiated approach. The obtained HNTs-I were further used in a 3D printing system to fabricate hydrogels with designed configurations.


Asunto(s)
Arcilla
14.
Phys Chem Chem Phys ; 24(32): 19382-19392, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35920205

RESUMEN

The coordination environment of photocatalytic active sites is determined by the type of surface termination on an α-SnWO4 semiconductor. However, the stability of these surface terminations has not been thoroughly explored. In this work, the stability of the α-SnWO4(010) surface termination was studied using a thermodynamic analysis based on density functional theory (DFT). Under appropriate thermodynamic equilibrium conditions, it is possible to stabilize the O-W, O-Sn, R-OOSn and ST3 terminations of the α-SnWO4(010) surface. The electronic structures of these three potential stable surface terminations are also calculated using a Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional to determine the conceivable bandgap values. It is found that there are numerous surface states in the bandgap of these terminations. This is due to the evident reconstruction of these terminations after geometry optimization. In addition, work functions are substantially different for possible surface terminations. The results suggest that Z-scheme heterostructures based on SnWO4 can be regulated by securing the thermodynamically favorable surface terminations under suitable physical/chemical conditions. At last, O-Sn termination exhibits a low overpotential value of 0.51 V, showing remarkable oxygen evolution reaction (OER) performance among all stable surface terminations considered in this work. Our study may help explore the intrinsic surface properties of SnWO4, which will be a viable strategy for developing SnWO4-based photocatalysts.

15.
Chaos ; 32(6): 063106, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35778151

RESUMEN

We consider a variant of the mean-field model of coupled phase oscillators with uniform distribution of natural frequencies. By establishing correlations between the quenched disorder of intrinsic frequencies and coupling strength with both in- and out-coupling heterogeneities, we reveal a generic criterion for the onset of partial locking that takes place in a domain with the coexistence of phase-locked oscillators and drifters. The critical points manifesting the instability of the stationary states are obtained analytically. In particular, the bifurcation mechanism of the equilibrium states is uncovered by the use of frequency-dependent version of the Ott-Antonsen reduction consistently with the analysis based on the self-consistent approach. We demonstrate that both the manner of coupling heterogeneity and correlation exponent have influence on the emergent patterns of partial locking. Our research could find applicability in better understanding the phase transitions and related collective phenomena involving synchronization control in networked systems.

16.
Org Lett ; 24(31): 5851-5854, 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-35904327

RESUMEN

For new ladder-type oligomers and polymers with versatile and robust synthetic strategies, in this study, four fully conjugated ladder-type overcrowded 9,9'-bifluorenylidene-based compounds and oligomers (BFY1, BFY2, BFY3, and BFY4) were synthesized via a Pd-catalyzed tandem Suzuki coupling/Heck cyclization reaction. By monomer screening and route optimization, the target products were obtained in high yields and characterized by 1H and 13C NMR spectroscopy and high resolution mass spectroscopy.

17.
ACS Omega ; 7(20): 17075-17082, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35647421

RESUMEN

Monoclinic phase bismuth vanadate (BiVO4) is one of the most promising photoelectrochemical materials used in water-splitting photoelectrochemical cells. It could be even better if its band gap and charge transport characteristics were optimized. Although codoping of BiVO4 has proven to be an effective strategy, its effects are remarkably poorly understood. Using the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional, we estimate the formation energy, electronic properties, and photocatalytic activities of F and Mo codoped BiVO4. We find that Mo atoms prefer to replace V atoms, whereas F atoms prefer to replace O atoms (FOMoV-doped BiVO4) under oxygen-poor conditions according to calculated formation energies. BiVO4 doped with FOMoV is found to be shallow-level doped, occurring with some continuum states above the conduction band edge, which is advantageous for photochemical catalysis. Moreover, FOMoV-doped BiVO4 shows absorption stronger than that of pure BiVO4 in the visible spectrum. Based on the band-edge calculation, BiVO4 doped with FOMoV still retains a high oxidizing capacity. It has been shown that FOMoV-doped BiVO4 exhibits a very high photocatalytic activity under visible light.

18.
J Colloid Interface Sci ; 617: 353-362, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35279570

RESUMEN

With the evolution of information technology, the development of smart materials for the information storage and encryption is in urgent need. Herein, halloysite nanotubes (HNTs)-based self-healing hydrogels were facilely prepared by using aryl arylboronic acid-bearing tetraphenylethylene (TPE) as crosslinker agent, in which the HNTs were covalently bonded into the polymeric matrix. With the addition of HNTs, the obtained hydrogel (H2) shows improved compression resistance performance and self-healing property, which can be customed in certain shapes. The TPE-crosslinked hydrogels (H1 and H2) are able to emit bright blue fluorescence centering at 457 nm when exposed to 365 nm light. By holding together with 1,4-phenylenebisboronic acid-crosslinked hydrogels (H3) with non-fluorescence property, the obtained cube is able to store UV-sensitive QR code information which is potentially to be recognized by QR code scanner or other smart tools.


Asunto(s)
Hidrogeles , Nanotubos , Arcilla , Fluorescencia , Polímeros
19.
Dis Markers ; 2021: 9628521, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858542

RESUMEN

OBJECTIVE: Myocardial ischemia-reperfusion injury (MIRI) is the leading cause of death in patients with cardiovascular disease. The purpose of this study is to investigate the effect and mechanism of forkhead box C2 (FOXC2) on MIRI in rats. METHODS: We made ischemia-reperfusion (I/R) models for rats by performing I/R surgery. After 3 hours, 3 days, and 7 days of reperfusion, we detected the structure and function of rat myocardium by 2, 3, 5-triphenyl tetrazolium chloride staining, echocardiography, lactate dehydrogenase kit, and haematoxylin-eosin staining. The change of FOXC2 expression in myocardial tissue was also detected. Then, we increased the expression of FOXC2 in rats by adenovirus transfection to clarify the effect of FOXC2 on changes of oxidative stress and inflammation of rat myocardium. In addition, we detected the effect of FOXC2 overexpression plasmid on the function of H9c2 cells in vitro. The expression changes of Nrf2/HO-1 in myocardial cells were also detected to clarify the mechanism of action of FOXC2. RESULTS: The expression of FOXC2 in I/R rats was significantly lower than that in the sham group. After overexpressing FOXC2 in I/R rats, we found that the expression of SOD1/2 of rat myocardium and inflammatory factors in the serum were significantly reduced. Overexpression of FOXC2 also increased the viability and antioxidant capacity of H9c2 cells. In addition, FOXC2 was found to increase the activity of the Nrf2/HO-1 signaling pathway in myocardial cells, and the inhibition of Nrf2/HO-1 signaling pathway attenuated the protective effect of FOXC2 on myocardial cells. CONCLUSIONS: MIRI in rats was accompanied by low expression of FOXC2 in myocardial tissue. Overexpression of FOXC2 reduces the level of inflammation and oxidative stress in myocardial tissue by promoting the Nrf2/HO-1 signaling pathway, thereby alleviating MIRI.


Asunto(s)
Factores de Transcripción Forkhead , Regulación de la Expresión Génica , Hemo Oxigenasa (Desciclizante) , Inflamación , Daño por Reperfusión Miocárdica , Factor 2 Relacionado con NF-E2 , Animales , Masculino , Ratas , Antioxidantes/farmacología , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Hemo Oxigenasa (Desciclizante)/genética , Hemo Oxigenasa (Desciclizante)/metabolismo , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Inflamación/prevención & control , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos , Estrés Oxidativo , Ratas Sprague-Dawley , Transducción de Señal , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo
20.
Chem Commun (Camb) ; 57(85): 11244-11247, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34633009

RESUMEN

We report a photosensitive polymyxin B-modified conjugated oligomer nanoparticle that integrates the targeted identification and synergistic photodynamic therapy in one treatment against resistant Gram-negative bacteria. The study expands the application of antibiotics and opens a new avenue for enhancing photodynamic antimicrobial therapy and fighting bacterial resistance.


Asunto(s)
Antibacterianos/química , Nanopartículas/química , Polietilenglicoles/química , Polimixina B/química , Animales , Antibacterianos/farmacología , Azidas/química , Química Clic , Farmacorresistencia Bacteriana Múltiple , Sinergismo Farmacológico , Escherichia coli/efectos de los fármacos , Colorantes Fluorescentes/química , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Imagen Óptica , Fotoquimioterapia , Polimixina B/farmacología , Staphylococcus aureus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...